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Abstract

International and high-seas fisheries often lack the institutions that enable the use of neg-

ative incentives such as catch limits and taxes. This leads not only to overfishing, but also to

excessive bycatch of charismatic species and juveniles of valuable commercial species. Certifi-

cation has been proposed as an instrument that may reduce the bycatch issue, but it has also

received criticism as it may increase overall fishing pressure. This issue becomes even more

relevant when certification aims to shift fishing pressure from juveniles to adults in an already

heavily exploited stock. In this paper we analyze under what circumstances certification can

improve the efficiency of the Pacific tuna fishery, where fishing on Fish Aggregation Devices

(FADs) is known to catch many juveniles of skipjack tuna and yellowfin tuna. We find that

under plausible assumptions the positive effect of shifting fishing effort away from the FAD
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fishery towards the fishery that does not use FADs can offset the negative effect of an increase

in overall fishing effort.

1 Introduction

Environmental organizations have repeatedly turned to ’consumer power’ to pressure government

and industry to more sustainable directions. The first of these, the German Blaue Engel, was

established in 1977 (Kirchhoff, 2000) to certify products that met a set of environmental standards,

but labels focused on a specific product, notably wood and fish, have since been established. The

most prevalent of ecolabels for fish and seafood is the certification by the Marine Stewardship

Council (MSC) (Howes, 2008), but there are many others, including several ’dolphin-safe’ labels,

the Ecofish label, and the Friend of The Sea (FOS) label (Ward and Phillips, 2008). In addition

to such labels, brands such as Sustunable 1 and Fish4Ever 2 include sustainable fishing in their

marketing strategy as a distinctive feature of their products. It has been shown empirically that

consumers are willing to pay a price premium for sustainable caught fish (Teisl et al., 2002; Erwann,

2009; Roheim et al., 2011).

Ecolabelling has not been without criticism, however. The MSC has been criticized for per-

ceived leniency of requirements and poor representation of developing countries (Gulbrandsen, 2009;

Jacquet et al., 2010). Moreover, a number of fisheries certified under MSC or FOS are nevertheless

being overfished (Froese and Proelss, ress). More generally, the concept of ecolabelling has also

been critized as it may perversely worsen the environmental problems for which they are designed

(Mattoo and Singh, 1994; Gudmundsson and Wessells, 2000; Sedjo and Swallow, 2002). One of the

mechanisms that may lead to this result is when the price premium for certified products drives some

consumers, who are indifferent about sustainability issues but consume the sustainable product for

other reasons such as quality, to the unsustainable product (Mattoo and Singh, 1994). Another

possibility is that the eco-label increases overall harvesting pressure as it promotes demand for the

product as such (Sedjo and Swallow, 2002).

Nevertheless, ecolabelling may be the only instrument at hand to exert pressure on an industry,

especially when it concerns management of an international, non-exclusive resource. The Western

and Central Pacific purse seine fishery is a case in point. Half the tuna harvested worldwide is

caught by the Pacific purse seine fleet (Miyake et al., 2010). The main species, skipjack tuna

1http://www.sustunable.com

2http://www.fish-4-ever.com/
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(Katsuwonus pelamis), makes up about 76% of total catches in the Western and Central Pacific

Ocean (WCPO) (WCPFC, 2011). With a biomass very close to unexploited levels and about

four times its value under maximum sustainable yield (MSY), skipjack tuna stocks are considered

underexploited (Langley and Hampton, 2008). Yellowfin tuna (Thunnus albacares), however, which

is the fleet’s next important species, is considered fully exploited, and is included in the IUCN Red

List as ’Near Threatened’ 3. It makes up about 21% of total catches in the WCPO (WCPFC, 2011),

and its stock has been declining steadily in the past half-century, bringing the stock close to its

MSY level (Langley et al., 2009). Further increases in fishing pressure are therefore likely to bring

the stock to an overfished state.

The different tuna stocks are linked technically. Purse seines catch three main types of tuna:

(1) schools that associate with dolphins; (2) schools that associate with floating objects; or (3)

so-called unassociated schools. Targeting of dolphin-associated schools is almost absent in the

Western and Central Pacific purse seine fishery, where tuna is mainly caught either through Fish

Aggregation Devices (FADs) or through so-called school sets aimed at unassociated schools (Miyake

et al., 2010). FADs are man-made floating objects, often carrying advanced sensing and tracking

technology, whereas unassociated schools are found with sonar devices or even helicopters. Both sets

typically catch a mixture of skipjack tuna, yellowfin tuna, and other species. The size composition,

and hence the markets supplied by the sets, however, differ markedly. FAD sets typically catch

small specimens of mostly skipjack tuna and juvenile yellowfin tuna, which are sold as canned tuna,

or dried and sold as katsuobushi. Sets on unassociated schools, hereafter referred to as unassociated

sets, catch larger skipjack tuna, which are also sold canned, and adult yellowfin tuna, which are

sold canned but also fresh or frozen (An et al., 2009). Hence, FAD sets have the advantage of a

higher success rate, but they also have a negative effect on the catch of tuna for the fresh market

through their bycatch of juvenile yellowfin tuna.

Managing WCPO tuna stocks, however, is difficult for several reasons. Tuna’s mobility combined

with the division of the WCPO over many different small island states and high-seas areas make

the stock practically an open-access resource (Sibert and Hampton, 2003). The costs of effective

management are high, especially for poor countries such the Pacific Island Nations (PICs) (Barclay

3Collette, B., Acero, A., Amorim, A.F., Boustany, A., Canales Ramirez, C., Cardenas, G., Carpenter, K.E.,

Chang, S.-K., de Oliveira Leite Jr., N., Di Natale, A., Die, D., Fox, W., Fredou, F.L., Graves, J., Guzman-Mora, A.,

Viera Hazin, F.H., Hinton, M., Juan Jorda, M., Minte Vera, C., Miyabe, N., Montano Cruz, R., Masuti, E., Nelson,

R., Oxenford, H., Restrepo, V., Salas, E., Schaefer, K., Schratwieser, J., Serra, R., Sun, C., Teixeira Lessa, R.P.,

Pires Ferreira Travassos, P.E., Uozumi, Y. and Yanez, E. 2011. Thunnus albacares. In: IUCN 2011. IUCN Red List

of Threatened Species. Version 2011.2. (www.iucnredlist.org). Downloaded on 16 May 2012.
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and Cartwright, 2007), and the management process itself is hampered by corruption (Hanich

and Tsamenyi, 2009). Although a Regional Fisheries Management Organization (RFMO) was

established in the form of the Western and Central Pacific Fisheries Commission (WCPFC) in 2004

(Langley et al., 2009), management of WCPO tuna stocks has so far been inadequate (Barclay and

Cartwright, 2007; Langley et al., 2009).

Given the difficulty of enforcing restrictions on WCPO tuna, ecolabelling may be one of the few

instruments that work, if it works. Ideally, an ecolabelling scheme would divert fishing activities

away from the use of FADs in favour of school sets. All else being equal, this would imply a lower

bycatch of low-value juvenile yellowfin tuna and a larger catch of high-value adult yellowfin tuna.

Promoting school sets, however, is a risky policy as the adult yellowfin tuna caught by unasso-

ciated sets is a fully exploited, and poorly managed, stock. Hence, the net effect of ecolabelling

unassociated sets depends on the magnitude of several countervailing mechanisms.

This paper aims to analyse the possible effect of certification of unassociated sets on the sus-

tainability and efficiency of the Western and Central Pacific purse seine fishery. We develop a

conceptual model where a representative consumer consumes canned skipjack tuna and yellowfin

tuna as well as fresh yellowfin tuna. Tuna stocks grow according to a simple two-cohort model,

and are caught by two fisheries, namely a FAD fishery and fishery limited to unassociated sets.

With this model we address the following research questions: (1) What is the effect of an increased

preference for school set canned tuna on biomass of the two tuna species and consumer surplus?

(2) To what extent does the change in consumer surplus result from an improved management of

the tuna stocks? and (3) Under what circumstances can increased preference for school set canned

tuna increase biomass of the two tuna species?

The paper is organised as follows. Section 2 presents the model structure, whereas Section 4

explains the parameter values. Section 5 presents the results, and Section 6 concludes.

2 The model

2.1 Global demand for tuna

We assume the global tuna market can be represented by a representative consumer who derives

utility from overall tuna consumption, T and a quantity X of a numeraire commodity:

U(X,T ) =

 X + γ η
η−1 T

η−1
η for η 6= 1

X + γ ln(T ) for η = 1
(1)
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where γ is a coefficient denoting the weight for tuna consumption relative to the numeraire, and

η denotes the overall elasticity of demand for tuna. Tuna consumption is composed of canned

tuna (quantity CC), and fresh tuna steaks, which are yellowfin tuna caught with unassociated sets

(quantity CF ), as a CES aggregate:

T (CC , CF ) =
(
C

σ−1
σ

C + (ϕCF )
σ−1
σ

) σ
σ−1

(2)

where σ is the elasticity of substitution between canned and fresh tuna; and ϕ > 1 reflects the

higher utility derived from fresh tuna as compared to canned tuna.

Canned tuna is composed of tuna caught with FADs (quantity CA), and canned tuna caught

with unassociated sets (quantity CU ), according to

CC = CA + λCU (3)

where λ ≥ 1 reflects the perhaps higher utility that consumers may derive from canned tuna from

unassociated sets.

As regards harvests of tuna, supply of canned tuna and fresh tuna is related to harvests of

skipjack tuna and yellowfin tuna as follows:

SA = HAj +HAJ +HAy (4a)

SU = HUJ (4b)

SF = HUY (4c)

where HAj , HAJ , and HAy denote harvest of juvenile skipjack tuna, adult skipjack tuna, and

juvenile yellowfin tuna through FADs; and HUJ and HUY denote harvest of adult skipjack tuna

and adult yellowfin tuna through unassociated sets. For harvests we assume Schaefer harvest

functions:

HAj = qAjEABj (5a)

HAJ = qAJEABJ (5b)

HAy = qAyEABy (5c)

HUJ = qUJEUBJ (5d)

HUY = qUY EUBY (5e)
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where qAj , qAJ , and qAy denote catchability of juvenile skipjack tuna, adult skipjack tuna, and

juvenile yellowfin tuna through FADs; qUJ and qUY denote catchability of adult skipjack tuna and

adult yellowfin tuna through unassociated sets; EA and EU denote the amount of fishing effort

through FADs and unassociated sets, respectively; and Bj , BJ , By and BY denote the biomass of

juvenile skipjack tuna, adult skipjack tuna, juvenile yellowfin tuna, and adult yellowfin tuna.

We assume an open-access fishery where all rents have dissipated:

pA (qAjBj + qAJBJ + qAyBy)EA = wAEA (6a)

(pUqUJBJ + pF qUYBY )EU = wUEU (6b)

where wA and wU denote the costs per unit of effort of the FAD fishery and the unassociated sets

fishery, respectively.

2.2 Biological growth

For both species we assume that the stock of juveniles depends on recruitment, harvest, and matu-

ration of juveniles. Recruitment is assumed to take place according to a Beverton and Holt (1957)

stock-recruitment function, which implies that juvenile biomass growth is as follows:

Gj =
ajBJ

1 + bjBJ
− αjBj −HAj (7a)

Gy =
ayBY

1 + byBY
− αyBy −HAy (7b)

(7c)

where Gj and Gy denote growth in juvenile biomass, aj , bj , ay, and by are coefficients in the

Beverton-Holt function, and αj and αy denote the fraction of juvenile biomass that becomes an

adult, corrected for biomass growth of juveniles.

Adult biomass grows through the maturation of juvenile biomass, minus natural mortality and

harvesting:

GJ = βjBj −mJBJ −HAJ −HUJ (8a)

GY = βyBy −mYBY −HUY (8b)

where GJ and GY denote growth in adult biomass; βj and βy denotes the amount of biomass

added to adult stock through maturation of juveniles; and mJ and mY denote natural mortality of

adults.
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3 Theoretical results

3.1 Population dynamics: steady states

Substituting the harvest functions (5) in the biological growth functions (7) and (8), and assuming

steady states gives:

Bj =
ajBJ

(1 + bjBJ)(αj + qAjEA)
(9a)

By =
ayBY

(1 + byBY )(αy + qAyEA)
(9b)

βjBj −mJBJ − qAJEABJ − qUJEUBJ = 0 (9c)

βyBy −mYBY − qUY EUBY = 0 (9d)

Substituting (9a) in (9c) and (9b) in (9d) gives

βj
ajBJ

(1 + bjBJ)(αj + qAjEA)
−mJBJ − qAJEABJ − qUJEUBJ = 0 (10a)

βy
ayBY

(1 + byBY )(αy + qAyEA)
−mYBY − qUY EUBY = 0 (10b)

Solving these equations for BJ and BY gives

BJ = 0 or BJ =
ajβj − (αj + qAjEA)(mJ + qAJEA + qUJEU )

bj(αj + qAjEA)(mJ + qAJEA + qUJEU )
(11a)

BY = 0 or BY =
ayβy − (αy + qAyEA)(mY + qUY EU )

by(αy + qAyEA)(mY + qUY EU )
(11b)

Bj =
mJ + qAJ EA + qUJ EU

βj
BJ (11c)

By =
mY + qUY EU

βy
BY (11d)

(11e)

Lemma 1. (a) BJ and Bj are monotonically decreasing in both EA and EU . (b) BY and By are

monotonically decreasing in both EA and EU .

3.2 Demand

With pC being the price for canned tuna and pF the price for fresh tuna, the first-order conditions

for the representative consumer are

γC
− 1

σ

C

(
C

σ−1
σ

C + (ϕCF )
σ−1
σ

) η−1
η

σ
σ−1−1

= pC (12a)

γϕ
σ−1
σ C

− 1
σ

F

(
C

σ−1
σ

C + (ϕCF )
σ−1
σ

) η−1
η

σ
σ−1−1

= pF (12b)
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with pC = pA, CA = CC and CU = 0 if pA < pU/λ; pC = pU/λ, CA = 0 and CU = CC/λ if

pA > pU/λ; and pC = pA = pU/λ, 0 ≤ CA ≤ CC , 0 ≤ CU ≤ CC/λ with CA + λCU = CC if

pA = λ pU .

From (12) we further derive

γ1−σ
(
C

σ−1
σ

C + (ϕCF )
σ−1
σ

)σ
η

= p1−σC + (pF /ϕ)1−σ ≡ P 1−σ
T (13)

CC = γη p−σC Pσ−ηT (14)

CF =
γη

ϕ
(pF /ϕ)−σ Pσ−ηT (15)

Indirect utility from fish consumption, which equals consumer surplus, thus is

v(pC , pF ) = γη
(

η

η − 1
P 1−η
T −

(
p1−σC + (pF /ϕ)1−σ

)
Pσ−ηT

)
=

γη

η − 1
P 1−η
T (16)

In a steady state, the prices can be expressed as functions of effort levels EA and EU only by

using the conditions for equilibrium biomass, (11) in the market equilibrium conditions

CC = (qAjBj + qAJBJ + qAyBy)EA + λ qUJBJ EU (17a)

CF = qUYBY EU (17b)

and plugging this into (12).

3.3 Special case: Skipjack tuna only

To get some insights into the mechanisms at work, we simplify the analysis by assuming ϕ = 0.

From the open-access conditions (6) we then have

pA =
wA

qAj Bj + qAJ BJ
(18)

pU =
wU

qUJ BJ
(19)

Proposition 1. For ϕ = 0, a sufficient condition for EU = 0 is

λ <
wU qAJ
wA qUJ

[
1 +

mJ

βj

qAj
qAJ

]
. (20)

Proof. When both fleets are active, EA > 0 and EU > 0, the market equilibrium condition for
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canned tuna is

1

pA
=

λ

pU

⇔ qAj
wA

Bj +
qAJ
wA

BJ = λ
qUJ
wU

BJ

⇔ qAj
wA

mJ + qAJEA + qUJEU
βj

+
qAJ
wA

= λ
qUJ
wU

⇔ mJ + qAJEA + qUJEU =
wA βj
qAj

[
λ
qUJ
wU
− qAJ
wA

]
(21)

⇔ EU =
1

qUJ

[
wA βj
qAj

[
λ
qUJ
wU
− qAJ
wA

]
−mJ − qAJEA

]
(22)

This condition cannot be fulfilled for a positive level of EU if condition (20) holds. Hence, under

condition (20) the unassociated sets fishery will be inactive, EU = 0.

Condition (20) states that there will be no unassociated sets fishery if the markup on the price

will not at least cover the cost markup for adult skipjack tuna, multiplied by a factor larger than

one, which captures the additional advantage of the FAD fishery that it catches juvenile skipjack

tuna as well.

3.4 Steady state with canned and fresh tuna

Now we turn to analyzing the case where fresh tuna is consumed as well, i.e. where ϕ > 0. In this

case, the unassociated sets fishery will always be active:

Lemma 2. If ϕ > 0, EU > 0 for all λ > 0.

Proof. Marginal utility of fresh tuna goes to infinity when supply goes to zero. Hence CF > 0,

which requires EU > 0.

For low values of λ, yellowfin tuna will be the main target of the unassociated sets fishery

and harvest of skipjack tuna will occur as bycatch (or, joint product) of fresh yellowfin tuna in

this fishery. These ‘bioeconomies of scope’ tend to give the unassociated sets fishery some cost

advantage (?). However, the FAD fishery will typically have a cost advantage for catching canned

tuna in the first place. So, for low values of λ, the FAD fishery will be active as well. If both

fisheries are active, the FAD-fishery will determine the price for canned tuna, as they are producing

canned tuna only, while the unassociated sets fishery is producing canned tuna as a joint product

of fresh yellowfin tuna. Thus, pC = pA = pU/λ.

Proposition 2. There exist a value λ? such that the FAD fishery will be inactive, EA = 0, for all

λ > λ?.
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Proof. Condition for EA = 0:

λ
qUJ BJ
qUY BY

CF = CC (23)

Thus,

pC = γ

(
λ
qUJ BJ
qUY BY

CF

)− 1
σ

((
λ
qUJ BJ
qUY BY

CF

)σ−1
σ

+ (ϕCF )
σ−1
σ

) η−1
η

σ
σ−1−1

(24)

= γ

(
λ
qUJ BJ
qUY BY

)− 1
σ

((
λ
qUJ BJ
qUY BY

)σ−1
σ

+ ϕ
σ−1
σ

) η−1
η

σ
σ−1−1

C
− 1

η

F (25)

pF = ϕ
σ−1
σ

(
λ
qUJ BJ
qUY BY

) 1
σ

pC (26)

In open access with EA = 0, the supply price for canned tuna thus follows from the open-access

condition (6b)

pCλ qUJBJ + pF qUYBY = wU (27)

⇔ pC

(
λ qUJBJ + ϕ

σ−1
σ

(
λ
qUJ BJ
qUY BY

) 1
σ

qUYBY

)
= wU (28)

⇔ pC =
wU (λ qUJBJ)

− 1
σ

(λ qUJBJ)
σ−1
σ + (ϕ qUY BY )

σ−1
σ

(29)

pF =
wU ϕ

σ−1
σ (qUYBY )

− 1
σ

(λ qUJBJ)
σ−1
σ + (ϕ qUY BY )

σ−1
σ

(30)

In open access with both fisheries active (EA > 0), the open-access conditions (6) lead to the

following supply prices for canned and fresh tuna

pC =
wA

qAj Bj + qAJ BJ + qAyBy
(31a)

pF =
1

qUY BY
[wU − pU qUJ BJ ] =

1

qUY BY
[wU − λ pC qUJ BJ ]

=
1

qUY BY

[
wU − λwA

qUJ BJ
qAj Bj + qAJ BJ + qAyBy

]
(31b)

Thus, for given stock sizes pC as given by (31a) is independent of λ, while pC as given by (29) is

monotonically decreasing in λ. Thus, at most one λ exists such that conditions (31a) and (29) hold

simultaneously. If, in addition, the FAD fishery is active for λ = 1, such a value λ? > 0 actually

exists.
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Table 1: Parameter values in the biological model

Math Description Value

mJ Mortality rate adult skipjack tuna biomass 0.05

mY Mortality rate adult yellowfin tuna biomass 0.60

αj Fraction skipjack tuna leaving juvenile cohort 0.50

αy Fraction yellowfin tuna leaving juvenile cohort 0.95

βJ Fraction skipjack tuna entering adult cohort 1.00

βY Fraction yellowfin tuna entering adult cohort 0.95

aj Coefficient a recruitment skipjack tuna 5.4

ay Coefficient a recruitment yellowfin tuna 4.1

bj Coefficient b recruitment skipjack tuna 6.5

by Coefficient b recruitment yellowfin tuna 2.8

Consumer surplus changes with λ as follows

dv(pC , pF )

dλ
= −γη Pσ−ηT

[
− ϕσ−1 p−σF

∂pF
∂λ

+

[
p−σC

∂pC
∂Bj

+ p−σF ϕσ−1 ∂pF
∂Bj

]
∂Bj
∂λ

+

[
p−σC

∂pC
∂BJ

+ p−σF ϕσ−1 ∂pF
∂BJ

]
∂BJ
∂λ

+

[
p−σC

∂pC
∂By

+ p−σF ϕσ−1 ∂pF
∂By

]
∂By
∂λ

+

[
p−σC

∂pC
∂BY

+ p−σF ϕσ−1 ∂pF
∂BY

]
∂BY
∂λ

]
(32)

The direct effect, captured by the first term in the brackets, is always positive – this is true by

construction. The more interesting question is in which directions goes the indirect effect, captured

by the second and third terms.

4 Parameter values

4.1 Biological parameters

The values of the biological parameters (Table 4.1) were chosen in order to match the steady-

state recruitment and spawning biomass of skipjack tuna and yellowfin tuna given by Langley

and Hampton (2008) and Langley et al. (2011) as closely as possible within the assumption that

0 ≤ mJ ≤ 1, 0 ≤ mY ≤ 1, 0 ≤ αj ≤ 1, and 0 ≤ αy ≤ 1 (see Appendix A).

Table 4.1 compares the values predicted by our model with those estimated by Langley and

Hampton (2008) and Langley et al. (2011).
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Table 2: Biomass in the absence of fishing and biomass and harvests under Maximum Sustain-

able Yield according to the biological model compared with the values estimated by Langley and

Hampton (2008) and Langley et al. (2011)

Our model WCPFC

B0
j Unexploited biomass juvenile skipjack tuna (mln mt) 0.82 1.30

B0
J Unexploited biomass adult skipjack tuna (mln mt) 8.15 6.30

BMSY
j MSY biomass juvenile skipjack tuna (mln mt) 1.50 1.11

BMSY
J MSY biomass adult skipjack tuna (mln mt) 1.44 1.32

HMSY
J MSY harvest skipjack tuna (mln mt per year) 1.43 2.26

B0
j Unexploited biomass juvenile yellowfin tuna (mln mt) 1.32 1.74

B0
J Unexploited biomass adult yellowfin tuna (mln mt) 2.08 2.00

BMSY
y MSY biomass juvenile yellowfin tuna (mln mt) 0.95 0.84

BMSY
Y MSY biomass adult yellowfin tuna (mln mt) 0.58 0.58

HMSY
Y MSY harvest yellowfin tuna (mln mt per year) 0.56 0.54

4.2 Economic parameters

Values for the economic parameters in the model (Table 3) were chosen to give catch estimates in

the same order of magnitude as public domain catch data provided by the WCPFC 4.

5 Numerical analysis

In this section we present the numerical results. All computations have been done in Matlab, codes

are made available as online appendix.

5.1 Reference parameter set

Under the parameter values in Table 3 we see that stimulating demand for certified canned tuna

(i.e. increasing λ) induces a shift from fishing activity on FADs to fishing activity on unassociated

sets (Figure 1, top). Although this effect is to be expected, it is striking that the FAD fishery

disappears entirely if λ nears a value of 4. Because from that point on the fishery on unassociated

sets is the only fishery left, the only effect of certification is an increase in overall demand for tuna.

4http://www.wcpfc.int/science-and-scientific-data-functions/public-domain-data
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Table 3: Parameter values in the economic model

Symbol Description Value

γ Weight for tuna consumption 9.0

η Demand elasticity of tuna 1.1

ψ Substitution elasticity MSC vs non-MSC canned 3 or 1000

σ Substitution elasticity canned vs fresh 2

λ Extra utility from MSC label 1

ϕ Extra utility from fresh tuna 2

qAJ Catchability FAD adult skipjack tuna 0.001

qAj Catchability FAD juvenile skipjack tuna 0.017

qAy Catchability FAD juvenile yellowfin tuna 0.005

qUJ Catchability unassociated adult skipjack tuna 0.001

qUY Catchability unassociated adult yellowfin tuna 0.007

wA Fishing costs 0.08

wU Fishing costs 0.11

This effect is also visible when we consider the relation between the steady-state biomass and

λ (Figure 1, bottom). As the FAD fishery declines, biomass of skipjack tuna and juvenile yellowfin

tuna increases, whereas biomass of adult yellowfin tuna declines due to the increased unassociated

sets fishery. Once the FAD fishery has disappeared altogether, biomass of juvenile tuna (both

skipjack tuna and yellowfin tuna) is stable, whereas biomass of adult tuna declines slightly. The

stability of juvenile biomass under the slight decline of adult stocks suggests that recruitment of

juvenile tuna is close to its maximum capacity.

As long as there is still an FAD fishery, the change in consumer surplus from an increased λ

is largely due to the shift from FAD fishery to unassociated sets fishery (2). Again, when the

FAD fishery has disappeared altogether the effect from this shift also disappears and the remaining

increase in consumer surplus is due to the direct effect of increased satisfaction from eating certified

tuna.

5.2 Effect of increasing aggregate demand

It is very likely that the results discussed thus far depend strongly on the effect of certification on

overall tuna demand. We therefore also consider the effect of increasing λ if the parameter η is
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Figure 1: Effort levels in the FAD (EA) and unassociated sets (EU ) fishery, and biomasses (measured

relative to biomasses at λ = 1) for the reference parameter set as a function of λ.
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increased from the reference value η = 1.1 to η = 3.0. To keep the senarios comparable, we adjusted

the expenditure parameter to γ = 4.63 such that aggregate effort in the baseline case λ = 1 is the

same for η = 1.1 and η = 3.0. Figure 3 shows that under this assumption the effect on overall

demand for tuna is so large that increasing λ has a detrimental effect on yellowfin tuna stocks.

Increasing λ still increases consumer surplus, but now the indirect effect, i.e. the effect due to the

shift from FAD fishery to unassociated sets fishery, is negative (Figure 4).

5.3 Effect of decreasing growth overfishing

Here we study the effect of decreasing growth overfishing by increasing the catchability parameter

for juvenile yellowfin tuna, qAy, from the reference value qAy = 0.005 to the same value as for

juvenile skipjack tuna, qAy = 0.017. What we see is that under these parameter values all stocks

benefit from increasing λ as long as it does not fully eliminate the FAD fishery (Figure 5). This

result indicates that if juvenile yellowfin tuna forms a substantial share of the FAD fishery’s catch,

moving some fishing effort away from the FAD fishery towards the unassociated sets fishery can be

beneficial to adult yellowfin tuna stocks, even if it increases fishing effort of adult yellowfin tuna.

6 Discussion and conclusion

Stimulating an open access fishery, for instance by certification or other promotional activities,

seems like the last thing that a conservationist should want to do. Our analysis suggests that

in a multispecies open-access fishery like the Western Pacific tuna fishery, certification of ’less

unsustainable’ fisheries (a lesser evil, so to speak) does indeed bring risks. Nevertheless, our analysis

also shows that it is very well possible that such a policy induces a shift away from even worse fishing

activities, so that the benefits from this shift offset its costs.

The essential question here is under what circumstances we can expect the benefits from certifi-

cation to offset the costs. Our analysis suggests that certification can improve open-access stocks if

(1) overall demand for the product is relatively insensitive to an enhanced interest in the certified

version; (2) the stock that needs protection most urgently (in this case juvenile yellowfin tuna) forms

a substantial part of the catch of the non-certified fishery; and (3) the effect of certification does

not entirely wipe out the non-certified fishery. Given the rapid developments in MSC certification

it is difficult to say whether these conditions are met, but it seems unlikely that certification of tuna

caught with unassociated sets has sufficiently strong effects on overall tuna demand or the FAD

fishery to be ineffective.
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This leaves the question whether an unmanaged, or poorly managed, fishery like the Pacific

tuna fishery should be certified at all. The Marine Stewardship Council, for instance, follows three

principles, namely that (1) the fishery is conducted in a manner that does not lead to overfishing;

(2) the fishery is conducted such that it allows for the maintenance of the structure, productivity,

diversity, and functioning of the ecosystem; and (3) the fishery is subject to an effective management

system (?). It is unlikely that the Western Pacific tuna fishery meets these criteria, so MSC

certification of this fishery seems unlikely in the foreseeable future. Our analysis suggests that in

such fisheries, where management is difficult for several reasons, improvements can still be made if

some principles are applied less stringently.

References

An, D.-H., Y.-J. Kwon, D.-N. Kim, D.-Y. Moon, and S.-J. Hwang (2009). Effects of set type on

catch of small-sized tuna by the korean tuna purse seine fishery in the wcpo. Technical report,

Western and Central Pacific Fisheries Commission.

Barclay, K. and I. Cartwright (2007). Governance of tuna industries: The key to economic viability

and sustainability in the western and central pacific ocean. Marine Policy 31 (3), 348–358.

Beverton, R. J. H. and S. J. Holt (1957). On the dynamics of exploited fish populations, Volume 19

of Fishery Investigations. London: Ministry of Agriculture, Fisheries and Food.

Erwann, C. (2009). Eco-labelling: A new deal for a more durable fishery management? Ocean and

Coastal Management 52 (5), 250–257.

Froese, R. and A. Proelss (In Press). Evaluation and legal assessment of certified seafood. Marine

Policy .

Gudmundsson, E. and C. R. Wessells (2000). Ecolabeling seafood for sustainable production:

Implications for fisheries management. Marine Resource Economics 15 (2), 97–113.

Gulbrandsen, L. H. (2009). The emergence and effectiveness of the marine stewardship council.

Marine Policy 33 (4), 654–660.

Hanich, Q. and M. Tsamenyi (2009). Managing fisheries and corruption in the pacific islands region.

Marine Policy 33 (2), 386–392.

Howes, R. (2008). The Marine Stewardship Council programme, Chapter 4, pp. 81–105. Chichester,

UK: Wiley-Blackwell.

16



Jacquet, J., D. Pauly, D. Ainley, S. Holt, P. Dayton, and J. Jackson (2010). Seafood stewardship

in crisis. Nature 467 (7311), 28–29.

Kirchhoff, S. (2000). Green business and blue angels. Environmental and Resource Economics 15 (4),

403–420.

Langley, A. and J. Hampton (2008). Stock assessment of skipjack tuna in the western and central

pacific ocean. Technical report, Western and Central Pacific Fisheries Commission.

Langley, A., S. Harley, S. Hoyle, N. Davies, J. Hampton, and P. Kleiber (2009). Stock assessment

of yellowfin tuna in the western and central pacific ocean. Technical report, Western and Central

Pacific Fisheries Commission.

Langley, A., S. Hoyle, and J. Hampton (2011). Stock assessment of yellowfin tuna in the western

and central pacific ocean. Technical report, Western and Central Pacific Fisheries Commission.

Langley, A., A. Wright, G. Hurry, J. Hampton, T. Aqorua, and L. Rodwell (2009). Slow steps

towards management of the world’s largest tuna fishery. Marine Policy 33 (2), 271–279.

Mattoo, A. and H. V. Singh (1994). Eco-labelling: Policy considerations. Kyklos 47 (1), 53–65.

Miyake, M. P., P. Guillotreau, C.-H. Sun, and G. Ishimura (2010). Recent developments in the

tuna industry: Stocks, fisheries, management, processing, trade and markets. Technical Report

543, Food and Agriculture Organization of the United Nations.

Roheim, C. A., F. Asche, and J. I. Santos (2011). The elusive price premium for ecolabelled

products: Evidence from seafood in the uk market. Journal of Agricultural Economics 62 (3),

655–668.

Sedjo, R. A. and S. K. Swallow (2002). Voluntary eco-labeling and the price premium. Land

Economics 78 (2), 272–284.

Sibert, J. and J. Hampton (2003). Mobility of tropical tunas and the implications for fisheries

management. Marine Policy 27 (1), 87–95.

Teisl, M. F., B. Roe, and R. L. Hicks (2002). Can eco-labels tune a market? evidence from

dolphin-safe labeling. Journal of Environmental Economics and Management 43 (3), 339–359.

Ward, T. J. and B. Phillips (2008). Ecolabelling of seafood: The basic concepts, Chapter 1, pp.

1–37. Chichester, UK: Wiley-Blackwell.

17



WCPFC (2011). Tuna fishery yearbook 2010. Technical report, Western and Central Pacific Fish-

eries Commission.

A Steady-state conditions for the calibration of the biologi-

cal model

Biomass in the absence of fishing is found by setting all harvests at zero and solving the system

formed by Equations 7 and 8 for juvenile and adult biomass:

Bj =
βjaj − αjmj

αjβjbj
(33a)

BJ =
βJaJ − αJmJ

αJmJbJ
(33b)

By =
βyay − αymy

αyβyby
(33c)

BY =
βY aY − αYmY

αYmY bY
(33d)

Biomass under maximum sustainable yield is found by solving Equations 7 and 8 for total

harvest of that cohort (i.e. FAD and school sets) and substituting these in the expression for total

harvest of the species:

HSKJ = Hj +HJ =
ajBJ

bjBJ + 1
+ (βj − αj)Bj −mJBJ (34a)

HY FT = Hy +HY =
ayBY

byBY + 1
+ (βy − αy)By −mYBY (34b)

Maximizing HSKJ and HY FT has an interior solution in adult biomass (BJ and BY ):

BMSY
J =

√
ajmJ −mJ

bjmJ
(35a)

BMSY
Y =

√
aymY −mY

bymY
(35b)

Equation 34 shows that the marginal harvest of juvenile biomass is β − α. Because β ≥ α,

we assume harvests of juvenile biomass are zero in the optimum, which results in the following

expressions for juvenile biomass:

Bj =
aj
√
ajmJ − ajmJ

αjbj
√
ajmJ

(36a)

By =
ay
√
aymY − aymY

αyby
√
aymY

(36b)
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Figure 2: Consumer surplus and the change of consumer surplus with λ (total, and disaggregated

in direct and indirect effects) for the reference parameter set as a function of λ.
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Figure 3: Effort levels in the FAD (EA) and unassociated sets (EU ) fishery, and biomasses (measured

relative to biomasses at λ = 1) with η increased to η = 3.0 as a function of λ.
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Figure 4: Change of consumer surplus with λ (total, and disaggregated in direct and indirect effects)

with η increased to η = 3.0 as a function of λ.
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Figure 5: Effort levels in the FAD (EA) and unassociated sets (EU ) fishery, and biomasses (measured

relative to biomasses at λ = 1) and with qAy increased to qAy = 0.017 as a function of λ.
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Figure 6: Change in consumer surplus with qAy increased to qAy = 0.017 as a function of λ.
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